Connecting Europe Facility 2014-2020

AQMO

Air Quality and MObility
Grant Agreement Number: INEA/CEF/ICT/A2017/1566962
2017-FR-IA-0176

D7.2

AQMO platform reference manual

Final

Version: 1.0
Author(s): François Bodin (UR1), Laurent Morin (UR1), Benjamin Depardon (UCit), Yiannis Georgiou (Ryacs), Sylvie Perdriel (AmpliSIM)
Date: 01 / 12 / 2020
Project and Deliverable Information Sheet

<table>
<thead>
<tr>
<th>AQMO Project</th>
<th>Project Ref. No: INEA/CEF/ICT/A2017/1566962</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project Title: Air Quality and mobility</td>
</tr>
<tr>
<td></td>
<td>Deliverable ID: <D7.2></td>
</tr>
<tr>
<td></td>
<td>Dissemination Level: PU *</td>
</tr>
<tr>
<td></td>
<td>Contractual Date of Delivery: 31 / 12 / 2020</td>
</tr>
<tr>
<td></td>
<td>Actual Date of Delivery: 08 / 01 / 2021</td>
</tr>
<tr>
<td></td>
<td>EC Project Officer: Mark VELLA MUSKAT</td>
</tr>
<tr>
<td>Authorship</td>
<td>Written by: François Bodin (UR1)</td>
</tr>
<tr>
<td></td>
<td>Contributors: Benjamin Depardon (UCit), Yiannis Georgiou (Ryacs), Laurent Morin (UR1), Sylvie Perdriel (AmpliSIM)</td>
</tr>
<tr>
<td></td>
<td>Reviewed by: Corentin Lefèvre (Neovia Innovation)</td>
</tr>
<tr>
<td></td>
<td>Approved by: Technical and Management Boards</td>
</tr>
</tbody>
</table>

* - The dissemination level are indicated as follows: **PU** – Public, **CO** – Confidential, only for members of the consortium (including the Commission Services) **CL** – Classified, as referred to in Commission Decision 2991/844/EC.

Document Status Sheet

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Status</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>30/11/2020</td>
<td>Draft V1</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>04/12/2020</td>
<td>Final version</td>
<td></td>
</tr>
</tbody>
</table>
References and Applicable Documents

List all external documents referenced in this document

List of Acronyms and Abbreviations

Below is an extensive the List of Acronyms used in previous deliverables. Please add additional ones specific to this deliverable and delete unrelated ones.

API Application Programming Interface
AQMO Air Quality and Mobility
AWS Amazon Web Service
CCME Cloud Cluster Made Easy
CPU Central Processing Unit
GPS Global Positioning System
HPC High-Performance Computing
K3S Kubernetes
NUC Next Unit of Computing
PM Particulate Matter
SDN Software Defined Network
VPN Virtual Private Network
WMS Workflow Management System
Table of contents

Introduction ... 5
1. Platform components overview.. 6
2. Component 1: Central unit .. 8
3. Components 4 to 7: HPC as a Service ... 9
4. Components 8-9: SDN & Workflow Manager ... 10
Annex A - CCME CLI documentation .. 11
Annex B - aqmoClient documentation .. 12
 Available commands .. 12
 JSON Outputs by command .. 12
 Interacting with the user personal directory ... 12
 Interacting with the available services for the logged user .. 14
 Interacting with the spoolers owned by or shared to the user .. 16

List of Figures

Figure 1: AQMO platform overview .. 6
Figure 2: Overview of the central unit component .. 8
Figure 3: HPC as a Service components .. 9
Figure 4: SDN & Workflow Management .. 10
Introduction

AQMO is proposing a platform that integrates mobile sensors with numerical simulations for air quality analysis. This deliverable gathers the set of documentations related to the AQMO platform components.

This manual is organized as follows: the first section recalls the various parts of the platform. The sections afterwards provide pointers to the documentation related to the components.
1. Platform components overview

Figure 1 gives an overview of the technical components of the platform.

The components in Figure 1 are the following:

1) Mobile sensor platform: this encompasses a set of sensors that are connected wirelessly with a central unit that is in charge of storing, processing and communicating the collected data.

2) Primary server: this component is in charge of storing the data before their long-term storage. It also provides support for that data visualization (see [2]) and platform monitoring capabilities. This part is related to the “Fog” topic.

3) Open data repository: this part is related to the Rennes Métropolis Open Data initiative currently developed by the RUDI project [1].

4) Simulation as a service: This component provides SIRANE [3] simulation access as a service. SIRANE is the numerical model for pollutant dispersion.

5) Resources management: The element of the platform aims at dealing with computing resources.

6) HPC resources: This is the resource provided by the IDRIS supercomputing center [4].

7) Cloud resources: In AQMO we also use HPC clusters deployed on Amazon Web Services [5] (AWS) through UCit’s software CCME (Cloud Cluster Made Easy)

8) SDN/VPN: Many devices in AQMO are enrolled in a Software Define Network that provide the interconnection with encryption capabilities between the devices and the primary server.

Air Quality and MObility - AQMO
9) Workflow manager: This software platform is in charge of orchestrating the different automations and data analytics workflows (pipelines) taking place at the edge (buses), fog (primary server) or HPC/Cloud resources.

Before going into more details in the next sections, it shall be noted that:

- Component 2 (“primary server”) is a proxy machine and as such does not have a reference manual
- Component 3 (“open data repository”) corresponds to the RUDI platform [1] and being under development (availability mid 2021) it is not yet documented
- Component 10 (“user access”) is explained in AQMO deliverable D7.3 “AQMO user manual”
2. Component 1: Central unit

The central unit (Numbered 1 in Figure 1) is in charge of collecting and uploading the data from the sensors (Particle Matter and GPS). This unit is organized around an Intel NUC running virtual LXC container. The central unit downloads the PM data using the LoRaWan or the 4G connections. For shorter latency purposes, the GPS data are downloaded using the 4G connection. The central unit is enrolled in a software defined network and a VPN is established with the “Primary Server”. Figure 2 gives an overview of the main elements in these components.

![Figure 2: Overview of the central unit component](attachment:image.png)

References

(1) AQMO D2.1 Report on the preliminary sensor platform
(3) https://dustinweb.azureedge.net/media/148300/bu-353s4.pdf
3. Components 4 to 7: HPC as a Service

The HPC as a service solution is built upon 3 main elements (Numbered 4-5-6-7 in Figure 1):

1. The Primary Server that holds the core functionalities receiving the requests for HPC Computations ((2) authenticate user and execute requested workflow), select the relevant target computing platform ((3) Predict-IT)
2. An HPC Centre, accessed through web services APIs ((5) and (6))
3. A Cloud Platform in which HPC Clusters can be dynamically deployed (4) and then accessed through the same web services APIs ((5) and (6))

Figure 3 gives an overview of the main elements in these components.

Figure 3: HPC as a Service components

References

(1) AQMO D4.1 - Architecture solution for HPC as a service
(2) Ryax documentation https://docs.ryax.tech/
(4) Annex A - CCME CLI documentation
(5) Annex B - qmoclient documentation
(6) EnginFrame documentation: https://download.enginframe.com/
4. Components 8-9: SDN & Workflow Manager

The Software Defined Networking (SDN) provides security, enabling access to devices either on the edge or between the edge and the Primary Server infrastructure. The Workflow Management System (WMS) implements data analytics automations such as pollution contextualization which take place within the bus (edge side) or HPC job dispatching through the HPC as a Service functionalities (fog side). WMS runs on top of a Kubernetes installation. Due to edge devices running on the bus having low CPU and memory resources, Ryax Technologies makes use of the lightweight Kubernetes distribution K3S which can run on both the edge and the primary server ensuring low memory and CPU footprint.

![Diagram of SDN & Workflow Management System]

References
(1) AQMO D5.1 - Workflow Management System
(2) Ryax documentation https://docs.ryax.tech/
Annex A - CCME CLI documentation

usage: ccme [-h]

 {create,update,delete,start,stop,status,list,instances,ssh,createami,version,add-ttl,delete-ttl,list-ttl,create-profile,list-profiles,delete-profile}

...

ccme is the CCME CLI and permits launching and management of HPC clusters in the AWS cloud.

positional arguments:
 {create,update,delete,start,stop,status,list,instances,ssh,createami,version,add-ttl,delete-ttl,list-ttl,create-profile,list-profiles,delete-profile}
 create Creates a new cluster.
 update Updates a running cluster using the values in the config file.
 delete Deletes a cluster.
 start Starts the compute fleet for a cluster that has been stopped.
 stop Stops the compute fleet, leaving the master server running.
 status Pulls the current status of the cluster.
 list Displays a list of stacks associated with CCME.
 instances Displays a list of all instances in a cluster.
 ssh Connects to the master instance using SSH.
 createami (Linux/macOS) Creates a custom AMI to use with CCME.
 version Displays the version of CCME.
 add-ttl Creates a TTL and associates it with a cluster.
 delete-ttl Deletes a TTL associated with a cluster.
 list-ttl Displays a list of TTLs associated with CCME clusters.
 create-profile Create a new cluster profile (wizard or advanced mode).
 list-profiles Displays the list of configured Profiles configured for CCME clusters.
 delete-profile Deletes a specified CCME Profile.

optional arguments:
 -h, --help show this help message and exit

For command specific flags, please run: "ccme [command] --help"
Annex B - aqmoClient documentation

Available commands

Usage: ./aqmoClient.sh [-hV] -e https://enginframe_host:port/enginframe -u "username"

[COMMAND]
Parameters:
- e url_enginframe
- h, --help
- u user_certificate
- V, --version
- d, --debug

Parameters:
- e url_enginframe
 EnginFrame server URL
- h, --help
 Show this help message and exit.
- u user_certificate
 Alias of the certificate in the keystore
- V, --version
 Print version information and exit.
- d, --debug
 (Hidden option) Print full stack trace if errors

Commands: (Interact with files)
 files
 upload <vroot:/dir> <inputFiles> ...
 Upload files inside a vroot
 download <vrootID> <inputFilesFullPath> ...
 [-o=<OutputDir>]
 Download an archive of remote files
 vroot-list
 List all home vroot and names
 list <vrootID> [dir]
 List all files in a vroot or in a specific directory if specified (heavy directory tree won't be showed)

Commands: (Interact with services)
 services
 list
 List Available services
 describe <ServiceID>
 List service parameters
 execute [-p="key=value,files=file1:file2,..."] <ServiceID>
 Execute the service

Commands: (Interact with spoolers)
 spoolers
 list
 List available spoolers
 describe [-j="jobID1,jobID2,..."|default:all jobs] <SpoolerID>
 List jobs statuses inside a spooler
 files
 list <SpoolerID>
 List file tree inside a specific spooler
 download <SpoolerID> <inputFilesFullPath> ...
 [-o=<OutputDir>]
 Download files from a specific spooler

JSON Outputs by command

Interacting with the user personal directory

List user’s vroots

Command: files vroot-list

Example: ./aqmoClient.sh -e url_enginframe -u username files vroot-list
Output:
{
 "vroots": [
 {
 "vroot-label": "efadmin’s Home",
 "vroot-id": "4501b5ed55dfdc826fa6db4acd09b24b4f552fc0"
 }
]
}
List files tree inside a vroot (or content in a specified directory)

Command: files list <vrootID> [dir]

Example: ./aqmoClient.sh -e url_enginframe -u username files list 4501b5ed55dfdc826fa6db4acd09b24b4f552fc0
Output:
{
 "vroot-id": "4501b5ed55dfdc826fa6db4acd09b24b4f552fc0",
 "directory-tree": [
 "test/test_subfld/emptydir",
 "test/test_subfld/test_subfold2/10_10_01_2014_11_10_59_florent.jpg",
 "test/test_subfld/test_subfold2/client.conf",
 "test/client.conf",
 "client.conf"
]
}

Example: ./aqmoClient.sh -e url_enginframe -u username files list 4501b5ed55dfdc826fa6db4acd09b24b4f552fc0 test
Output:
{
 "vroot-id": "4501b5ed55dfdc826fa6db4acd09b24b4f552fc0",
 "directory-path": "test",
 "directory-content": [
 "test_subfld/",
 "somedata.dat"
]
}

Download remote files

Command: files download <vrootID> <inputFilesFullPath>... [-o=<OutputDir>]

Note: files are archived (.zip) and downloaded locally

Example: ./aqmoClient.sh -e url_enginframe -u username files download 4501b5ed55dfdc826fa6db4acd09b24b4f552fc0 test/somedata.dat test/test_subfld/ -o localDir/localSubdir
Output:
{
 "downloaded": [
 {
 "file": "test/somedata.dat test/test_subfld/ ",
 "local-path": "localDir/localSubdir/EF.Download.2020-04-03_12-45-46.zip"
 }
]
}
Listing service parameters

Command: services describe <ServiceID>

Example: ./aqmoclient.sh -e url_engineframe -u username services describe //applications/batch_builtin_sample_compress_job.published

Output:
{
 "service-name": "Sample Compress Job",
 "service-id": "//applications/batch_builtin_sample_compress_job.published",
 "services-parameters": [
 {
 "param-name": "Execution cluster:",
 "param-key": "cluster",
 "param-extra-desc": "",
 "param-type": "list",
 "list-choices": [
 {
 "name": "linux",
 "value": "linux:slurm"
 }
],
 },
 {
 "param-name": "File to compress:",
 "param-key": "file",
 "param-extra-desc": "(this file will be uploaded to the server)",
 "param-type": "Single file upload"
 },
 {
 "param-name": "Compression level:",
 "param-key": "level",
 "param-extra-desc": "",
 "param-type": "list",
 "list-choices": [
 {
 "name": "maximum",
 "value": "9"
 },
 {
 "name": "medium",
 "value": "4"
 },
 {
 "name": "minimum",
 "value": "1"
 }
]
 },
 {
 "param-name": "Multiple File Upload",
 }
]
}
"param-key": "files",
"param-extra-desc": "",
"param-type": "Multiple file upload"
}
}

Command: execute [-p="key=value,files=file1:file2,..."] <ServiceID>

Example: ./aqmoClient.sh -e url_enginframe -u username services execute -p="cluster=linux:slurm,file=hugeLocalDataFile.dat,level=9" //applications/batch_builtin_sample_compress_job.published
Output:
{
 "spooler-name": "Job Compress hugeLocalDataFile.dat",
 "spooler-id": "spooler:///opt/nice/enginframe/spoolers/efadmin/tmp7380574954436226192.ef"
}

Interacting with the spoolers owned by or shared to the user

List all available spoolers

Command: spoolers list

Example: ./aqmoClient.sh -e url_enginframe -u username spoolers list
Output:
{
 "spoolers": [
 {
 "name": "Job Compress hugeLocalDataFile.dat",
 "id": "spooler:///opt/nice/enginframe/spoolers/efadmin/tmp7380574954436226192.ef"
 },
 {
 "name": "Job Compute atomic destruction",
 "id": "spooler:///opt/nice/enginframe/spoolers/efadmin/tmp6070959080153131875.ef"
 }
]
}

Get a spooler status

Command: spoolers describe [-j="jobID1,jobID2,..."] [default: all jobs] <SpoolerID>

Note: The -j option is here to only list the status of specific jobs. All jobs are displayed by default.

Example: ./aqmoClient.sh -e url_enginframe -u username spoolers describe
spooler:///opt/nice/enginframe/spoolers/efadmin/tmp7380574954436226192.ef
Output:
List files inside a spooler

Command: spoolers files list <SpoolerID>

Note: job files output may vary.

Example: ./aqmoClient.sh -e url_enginframe -u username spoolers files list
spooler:///opt/nice/enginframe/spoolers/efadmin/tmp7380574954436226192.ef
Output:
{
 "elements": [
 "hugeLocalDataFile.dat.gz",
 "slurm-160.out"
]
}

Command: spoolers files download <SpoolerID> <inputFilesFullPath>... [-o=<OutputDir>]

Example: ./aqmoClient.sh -e url_enginframe -u username spoolers files download
spooler:///opt/nice/enginframe/spoolers/efadmin/tmp7380574954436226192.ef
hugeLocalDataFile.dat.gz slurm-160.out -o somelocaldir/subfold
Output:
{
 "downloaded": [
 {"file": "hugeLocalDataFile.dat.gz slurm-160.out ",
 "local-path": "somelocaldir/subfold/EF.Download.2020-04-03_13-59-27.zip"
 }
]
}