

Connecting Europe Facility 2014-2020

AQMO

Air Quality and MObility

Grant Agreement Number: INEA/CEF/ICT/A2017/1566962

2017-FR-IA-0176

D5.1

Workflow Management System

FINAL

Version: 2.0, 27/09/2019

Author(s): Yiannis Georgiou, RYAX

Date: 27/09/2019

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 2

Project and Deliverable Information Sheet

AQMO Project Project Ref. №: INEA/CEF/ICT/A2017/1566962

Project Title: Air Quality and mobility

Project Web Site: http://aqmo.irisa.fr/

Deliverable ID: D5.1

Dissemination
Level:

CO

Contractual Date of Delivery:

31 / 08 / 2019

Actual Date of Delivery:

27 / 09 / 2019

EC Project Officer: Mark VELLA MUSKAT

Authorship

Written by: Yiannis Georgiou (RYAX)

Contributors:

Reviewed by: François Bodin (UR1)

Benjamin Depardon (UCit)

Approved by: Technical and Management boards

* - The dissemination level are indicated as follows: PU – Public, CO – Confidential, only for members

of the consortium (including the Commission Services) CL – Classified, as referred to in Commission
Decision 2991/844/EC.

http://aqmo.irisa.fr/

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 3

Document Status Sheet

Version Date Status Comments

0.8 12/08/2019 Draft V1 BD: document plan

1.0 22/09/2019 V1.0 Final

2.0 27/09/2019 V2.0 Approved

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 4

Tables

Table of Contents

1 Introduction ..1
2 State of the art ...1

2.1 Workflow Management Systems ... 1
2.2 Resource Management and Orchestration Systems .. 3

3 AQMO platform: hybrid infrastructure & workflow automations ..4
3.1 Hybrid Distributed Computing Infrastructure ... 4
3.2 Workflow Automations ... 5

4 AQMO Workflow Management Design ...7
4.1 High level view of Ryax Workflow Management System .. 8
4.2 Addressing AQMO’s Requirements with Ryax Workflow Management System functionalities10

5 Ryax Workflow Management System Architecture, Internals and Usage .. 12
5.1 Software Defined Networking .. 12
5.2 Resource Management and Orchestration ... 16
5.3 Workflows Management .. 18
5.4 Ryax Workflow Management Architecture in the context of AQMO ... 22
6 Conclusion .. 23
7 Annexes .. 24

Table of Figures

Figure 1: General Overview of Ryax Workflow Management System .. 2
Figure 2: Principal layers of Ryax solution .. 2
Figure 3: Ryax Workflow Management internal architecture .. 2
Figure 4: Ryax Workflow Management Internal Architecture view when deployed on a distributed

computing infrastructure ... 2
Figure 5: Ryax Workflow, Orchestration and Communication layers as adapted in the context of

AQMO ... 2

https://neoviainnov.sharepoint.com/sites/NeoviaTeams/Documents%20partages/GX_GESTION/GM_AQMO/WP5_Computing%20&%20storage%20workflow%20mgt%20and%20Visualization%20&%20citizen%20access/D5.1_Workflow%20Management%20System_V2.0_New%20format.docx#_Toc20501130
https://neoviainnov.sharepoint.com/sites/NeoviaTeams/Documents%20partages/GX_GESTION/GM_AQMO/WP5_Computing%20&%20storage%20workflow%20mgt%20and%20Visualization%20&%20citizen%20access/D5.1_Workflow%20Management%20System_V2.0_New%20format.docx#_Toc20501131
https://neoviainnov.sharepoint.com/sites/NeoviaTeams/Documents%20partages/GX_GESTION/GM_AQMO/WP5_Computing%20&%20storage%20workflow%20mgt%20and%20Visualization%20&%20citizen%20access/D5.1_Workflow%20Management%20System_V2.0_New%20format.docx#_Toc20501132
https://neoviainnov.sharepoint.com/sites/NeoviaTeams/Documents%20partages/GX_GESTION/GM_AQMO/WP5_Computing%20&%20storage%20workflow%20mgt%20and%20Visualization%20&%20citizen%20access/D5.1_Workflow%20Management%20System_V2.0_New%20format.docx#_Toc20501133
https://neoviainnov.sharepoint.com/sites/NeoviaTeams/Documents%20partages/GX_GESTION/GM_AQMO/WP5_Computing%20&%20storage%20workflow%20mgt%20and%20Visualization%20&%20citizen%20access/D5.1_Workflow%20Management%20System_V2.0_New%20format.docx#_Toc20501133
https://neoviainnov.sharepoint.com/sites/NeoviaTeams/Documents%20partages/GX_GESTION/GM_AQMO/WP5_Computing%20&%20storage%20workflow%20mgt%20and%20Visualization%20&%20citizen%20access/D5.1_Workflow%20Management%20System_V2.0_New%20format.docx#_Toc20501134
https://neoviainnov.sharepoint.com/sites/NeoviaTeams/Documents%20partages/GX_GESTION/GM_AQMO/WP5_Computing%20&%20storage%20workflow%20mgt%20and%20Visualization%20&%20citizen%20access/D5.1_Workflow%20Management%20System_V2.0_New%20format.docx#_Toc20501134

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 5

Executive Summary

Workflow Management Systems are responsible for automating the orchestration of
groups of tasks upon computational resources. They usually rely upon Resource Man-
agement and Orchestration Systems which perform the actual job of resource alloca-
tion, task deployment and task life-cycle control.

AQMO platform has specific needs in terms of workflow management since it impli-
cates execution of data analytics on different computational domains such as Edge,
Fog and Cloud/HPC. This report analyzes the architecture, configuration and usage of
the workflow management system Ryax which is used in the context of AQMO.

The report describes the different challenges that Ryax has to deal with related to hy-
brid Edge/HPC executions and provides different examples of workflows needing au-
tomation in AQMO. It analyzes Ryax internals and architecture while providing solu-
tions to address the various AQMO issues.

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 1

1 Introduction

The general objective of the AQMO platform is to provide a service for measuring and
simulating air quality in the Rennes Metropolis in France. In particular, it will serve
citizens and policy makers with tools to provide air quality monitoring and insights for
decision-making with reliable information and rational forecasts.

On the technical side AQMO is composed of a hybrid infrastructure consisting of edge,
fog and High Performance Computing (HPC)/cloud domains of computational re-
sources: Initially the air quality data are collected by sensors upon different buses and
drones (edge) circulating in the city, they are aggregated on centralized servers (fog)
before being sent for processing on HPC centers (on-premises or Cloud based) where
the heavy lifting simulations take place to extract adapted forecasts and insights. On
each different domain where compute power is available (edge/fog/cloud), processing
may take place to perform various light or heavy data manipulations. Furthermore, data
movement and aggregations can take place in different phases among computational
domains. Automating the orchestration of data analytics tasks like the previous ones,
demands the involvement of a specialized software stack combining processes such
as resource allocation, load balancing, fault tolerance and controlled network commu-
nications.

The Workflow Management System (WMS) is responsible for automating the orches-
tration of task collections upon computational resources. The WMS usually relies upon
a Resource Management and Orchestration System (RMOS) which will handle the
difficult job of actually executing the tasks on the resources. The specificities of AQMO
platform such as the usage of a hybrid distributed computing infrastructure, the need
for lightweight and low-power systems software stack for the edge layer computational
resources (within buses and drones), the need for stream processing and that of se-
cure network transfers widens the scope of traditional workflow management and or-
chestration systems.

In AQMO, the combined jobs of WMS and RMOS are performed by the proprietary
solution Ryax whose functionalities and architecture are the subject of the present re-
port and will be described in the remainder of this document.

2 State of the art

This section provides the state of the art on software systems and research similar to
workflow management, resource management and orchestration upon distributed en-
vironments.

2.1 Workflow Management Systems

The Workflow Management system is responsible for the automation of orchestration
and execution of task collections upon computational resources. A common pattern in
scientific and cloud computing involves the execution of many computational and data

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 2

manipulation tasks which are usually coupled i.e., output of one task used as input on
another. Hence coordination is required to satisfy data dependencies. The workload of
task execution is divided among the available distributed computational resources.
Consequently this introduces further complexity related to processes such as load bal-
ancing, data storage, data transfer, tasks monitoring and fault-tolerance Automation
of the aforementioned aspects of the orchestration process has led in the creation of
workflow management systems.

A recent study by Deelman et al. [i] related to scientific workflow management analyses
the current state of the art on these systems and provides future research challenges.
On the HPC side there are some particular tools such as Taverna[ii], Pegasus[iii] and
Makeflow[iv] that have been used in production since years with different maturity lev-
els. Those systems generally share many similarities in their concepts. They all have
one or more principal languages to program workflows and they provide connections
towards specific resource management systems for the deployment part. They have
been designed with scalability and fault tolerance in mind and their multiple years in
production has allowed them to make a lot of progress on the interoperability part.
Nevertheless their main focus is basically on the HPC and scientific workflows with
none or minimum support of dynamic data analytics. On the other side systems such
as Airflow [v], Luigi [vi] and Argo [vii] have been designed for Cloud applications and
allow the usage of more flexible abstractions such as containerization and micro-
services which makes them more flexible and more adapted for data analytics. Never-
theless those systems can principally address batch processing operations with no
facilitations for streaming operations.

Dealing with Streaming data is a need of new applications and use cases requiring
reactivity and flexibility. Systems using Internet of Things (IoT) and Edge Computing
will need to support stream processing to better cope with the challenges of new tech-
nologies and applications. Software solutions such as Beam[viii] and Google Cloud Da-
taflow [ix] have been designed to provide unified model for batch and stream data pro-
cessing with facilitation in the expression of Big Data workflows using higher level ab-
straction. They integrate seamlessly with specialized data processing frameworks such
as Spark[x], Flink[xi] and others on which they delegate the difficult task of runtime.

Those systems are ideal for Cloud Computing infrastructures with powerful computing
characteristics but their design choices such as the choice of programming language
does not make them adaptable for use cases implicating Edge Computing and IoT.
Indeed, their choice of Java and Scala as base language makes them heavyweight for
constrained computing power infrastructures and their design does not support net-
work intermittence which is an important challenge for various edge computing use
cases.

The workflow management system used within AQMO project is Ryax which considers
the current state of the art and goes beyond since it is specifically designed to deal
with both batch and streaming operations along with the challenges of Edge Compu-
ting and IoT use cases. In addition it provides high-level abstractions which specializes
in the programming of data analytics workflows based on intuitive human logic and not
complex computational algorithms.

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 3

2.2 Resource Management and Orchestration Systems

Resource management and Orchestration holds a very important place in the software
stack of distributed systems since it is responsible for providing the necessary compute
power to user jobs based on their needs and the resources availabilities.

The advent of Cloud and Big Data systems along with the usage of microservices and
containerization brought the needs of environment provisioning and auto-scaling.
Hence, the management of applications’ lifecycle orchestration became an integrated
part of resource managers which are also known as orchestrators.

Older state-of-the-art HPC resource managers such as Slurm and PBSPro do not pro-
vide integrated support for environment provisioning and hence no orchestration is
feasible. However, newer resource managers such as Mesos, Yarn and Kubernetes
enable the deployment of containers and allow the applications’ lifecycle management.

This studyxii upon orchestrators discusses the various advances that have been made
regarding scheduling. Kubernetesxiiixiv and Mesosxv are two of the most advanced
open-source orchestrators. Kubernetes is probably the one that has been more widely
adopted, it has a rapidly growing community and ecosystemxvi with plenty of platforms
being developed upon it.

Kubernetes simplifies the deployment and management of containerized applications.
It is based on a highly modular architecture which abstracts the underlying infrastruc-
ture and allows internal customizations such as deployment of different software de-
fined networking or storage solutions. It supports various Big Data frameworks such
as Hadoop MapReduce, Spark and Kafka and has a powerful set of tools to express
the application lifecycle considering parameterized redeployment in case of failures,
auto-scaling, state management, etc. Furthermore, it provides advanced scheduling
capabilities and the possibility to express different schedulers per job.

However, our requirements in terms of orchestration have grown larger and as this
recent studyxvii presents we are still early in reaching our objectives. Orchestrators are
just starting to integrate the edge and serverless functions but still effort is needed for
supporting resources disaggregation at the edge, simplified data management and ab-
straction mechanisms for administrators and developers.

Even if Kubernetes is today production-level for typical cloud data centres it is not
adapted for the constrained edge capabilities nor for multi-cluster deployments, such
as integrating different layers of compute resources (edge, fog and cloud).

Efforts are currently ongoing to better adapt Kubernetes for the edge. Open-source
solutions such as k3sxviii where Kubernetes heavyweight internal procedures have
been stripped down are more adapted to our needs.

Concerning multi-clustering, the multi-cluster special interest group (SIG) community
of Kubernetes works on the federation v2 projectxix which focuses on integrating multi-
ple clusters under a federation while providing a generic scheduling engine that, based
on policies, is able to make decisions on how to place arbitrary Kubernetes Application

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 4

Programming Interface (API) objects. In the same lines other efforts such as specific
networking service meshesxx and multi-cluster schedulersxxi for Kubernetes provide
promising solutions but their adaptation in our contexts needs to be confirmed.

In AQMO the workflow management system Ryax adopts Kubernetes orchestrator and
resource management. In particular the lightweight K3S distribution for optimal usage
on the Edge computing nature of the project. In addition the software defined network-
ing solution of ZerotierOnexxii is used to cover the needs of security, authentication,
flexibility and simplicity for the layer of network management. Different solutions for
multi-clustering are currently under evaluation.

3 AQMO platform: hybrid infrastructure & workflow au-
tomations

This section describes the hybrid distributed computing infrastructure upon which
AQMO platform is built along with the specificities and complexities that this brings in
terms of resource management. In addition it presents some typical workflow auto-
mations needed in the context of AQMO.

3.1 Hybrid Distributed Computing Infrastructure

AQMO computational infrastructure is composed of different domains where the data
analytics tasks of workflows can be executed. The list that follows provides each of the
3 domains along with their characteristics, requirements and usage:

i) The Edge Central Unit composed of low power and constrained capabilities compute
platform is situated within each bus or drone and is physically in proximity with the
sensors. The edge central unit is typically used for data pre-treatment and temporary
storage. Besides the sensors collecting air quality data, other sensors may be con-
nected to the compute platform such as noise sensors, cameras, etc which raises the
need of providing secure ways to add new endpoints in a controlled plug&play manner.
The compute platform on each bus or drone needs to function independently in terms
of orchestration regardless the stability of the network connection with the rest of the
fleet or the internet. Nevertheless, the fleet of edge central units has to be controlled
and managed from a centralized point facilitating their configuration, monitoring and
updates. The fleet of edge central units represents the edge domain. AQMO adminis-
trators and Central Unit operators have the rights to configure and update edge central
units.

ii) The Fog Primary Server(s) composed of a typical computational platform is (are)
situated somewhere within the same city (university, city hall, etc) where the buses
circulate. The fog primary server(s) is (are) responsible for tasks such as permanent
storage, raw data collection from buses, simulation dispatching to HPC centers, in-
sights and reports creation based on the simulation results. They also play the role of
centralized points where administrators can automate the configuration, monitoring

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 5

and updates programmed for the fleet of edge central units. Methods to support the
secure registration of edge central units in the fleet need to be proposed in a controlled
plug&play way. The network connection from the primary server towards the HPC plat-
forms and the internet is considered stable. AQMO administrators and Central Unit
operators have the rights to configure and update edge central units. AQMO data sci-
entists have the rights to submit simulations on HPC platforms and create reports using
insights and forecasts from the simulations.

iii) The HPC platforms deployed on-premises (on an HPC center) or on Cloud (Amazon
Web Service (AWS) or other) which are remote but powerful computing infrastructures
destined for long batch simulations. The HPC platforms either on-premises or on Cloud
are controlled by specific local resource management systems. AQMO platform
passes through an HPC-as-a-Service mode to execute simulations on these domain.
The on-premises HPC platfom grant no administrative control what-so-ever to AQMO
administrators, operators or data-scientists. They only allow simulations submission,
execution monitoring and results collection. On the other hand, in case of Cloud de-
ployed HPC platforms AQMO stakeholders have more rights. In particular, besides
submitting and monitoring executions, AQMO administrators, operators and data-sci-
entists can configure the HPC cluster based on their needs prior to launching their
simulation.

3.2 Workflow Automations

There are basically 3 different processing areas where data analytics can take place.
The edge within the buses or drones directly where data are collected, the fog layer or
primary server where data from all buses and drones are aggregated along with other
tasks such as reporting, visualizations or group reconfiguration of buses and finally the
Cloud or the HPC centers. Workflows of data analytics need to be created, modified,
automated and deployed upon the edge, the primary server and the HPC platform or
even on all of them, seamlessly. Here are some of the principal workflows that are
needed to be deployed on each compute domain individually or combined with other
domains:

3.2.1 Edge layer workflows

The workflows deployed at the edge within the buses or the drones are the ones related
with the initial processing of the raw data collected from the different sensors integrated
upon the AQMO connected vehicles. Readers can refer to deliverable D2.1 for more
information on the hardware and sensors characteristics. Here are some examples for
the edge related workflows:

1. One or multiple cameras may be connected to the edge compute processing
module (Intel Next Unit of Computing (NUC)) within the AQMO vehicles. Images
captured are transferred with Message Queuing Telemetry Transport (MQTT)
protocol from the camera to the Intel NUC. When transferred each image needs
to pass from an on-the-fly data real-time object detection analysis (like YOLOxxiii)

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 6

to contextualize the air quality measurements (realize if a bus follows another
car or bus) and perform automated blurring to preserve data privacy.

2. Air quality and Global Positioning System (GPS) measurements captured from
specialized sensors are transferred with MQTT protocol to the Intel NUC every
second. Besides, other sensors for environmental measures may be added in
the future (such as noise). In order to better manage the limited storage facilities
of the Intel NUC a need to periodically compress data has appeared. Hence
another workflow automation is: Every X minutes or Y hours compress collected
data from sensors and remove raw data.

3. AQMO vehicles are not permanently connected to the Internet. There is at least
one moment per day that the buses may connect to the Internet through WiFi
without intermittence and that is when they are out of duty parked for the night.
Other moments during the day 3G/4G or even WiFi may function depending on
their localization but the connection is intermittent. A workflow automation need
is: Whenever Internet connection is established send data that have not yet
been sent to the primary server and remove data from the Intel NUC when trans-
fer has been acknowledged.

3.2.2 Fog (primary server) layer workflows

The workflows deployed at the primary server (fog layer) are related to tasks around
grouping of data or controlling workflows on multiple edge modules or programming
the deployment of workflows on the Cloud and HPC. Here are some examples for the
fog related workflows:

1. Data transferred from buses on a specific directory need to be cleaned and
stored within a database (such as MongoDB) for easy retrieval and querying.
Hence, the workflow automation need is: Periodically access the directory
where measurement data are gathered, clean data using specific custom data
manipulation techniques and store data within the MongoDB deployed on
server.

2. The data stored within the database will be used with decreasing frequency
considering their collection date hence particular attention should be given on
how and where older data should be stored. A workflow automation may do the
following: Every month move 1 month old data from hot DB (MongoDB) on warm
Cloud storage (Amazon S3) and move 1 month old data from Cloud storage
(Amazon S3) on cold Cloud storage (Amazon Glacier).

3. Perform group configuration (or reconfiguration) of the workflows deployed on
the edge modules. Instead of waiting the connection of each bus on the network
program or update a specific workflow for example the one that periodically
compresses collected data and deploy it on each bus. In this case the workflow
automation will be: When a bus is connected to the network deploy the new
workflow and remove the older one if it exists.

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 7

4. Submit an HPC simulation using specific data on an on-premises HPC platform.
The workflow automation may be: Upon request, extract data related to a se-
lected geographical and temporal region and upload them to a selected HPC
Platform. Then launch simulation using these data, wait for the end of the sim-
ulation collect results, compress them and collect them on the Primary Server.

5. Submit an HPC simulation on a Cloud deployed HPC platform. The workflow
automation may be: Based on the needs for execution deploy the right size of
an HPC platform on the Cloud and once this is ready transfer data and launch
the simulation. Then wait for the end of the simulation collect data back to Pri-
mary Server and destroy the deployed HPC platform.

3.2.3 HPC - Cloud layer workflows

The workflows deployed on HPC platforms are not directly controlled by Ryax
- the AQMO workflow management system, like the workflows in the fog and
edge domains. Hence only actions related to the ones allowed by the interme-
diate HPC-as-a-Service software can be performed. Here are some examples
for the HPC-Cloud related workflows:

1. In the context of urgent-computing launch multiple simulations with the same
data but with variations in their configuration. When each simulation is finished
transfer data to Primary Server.

2. Combine simulations between them for a complete view. Wait for the end of
one simulation before launching the next one. When all of the simulations are
finished transfer all data to Primary Server.

3.2.4 Urgent-computing workflows

The workflows related with urgent-computing have the particularity to be high priority
hence they are more likely to combine all 3 computational domains (edge-fog-cloud).
Here is an example for the urgent-computing workflows

1. Workflow that combines all 3 edge-fog-cloud domains. In the context of ur-
gent-computing when data are collected on drones they are transferred to the
Primary Server which are then forwarded directly to the HPC platform where
multiple simulations are triggered, to have a result fast. Then results are col-
lected on the Primary server and reports are created featuring insights and
forecasts calculated with the simulations. Since more collected data arrive con-
tinuously, new simulations are launched automatically and eventually new re-
ports are created on-the-fly based on the updated forecasts.

4 AQMO Workflow Management Design

Based on the description of the underlying hybrid distributed computing infrastructure
of AQMO platform, its characteristics and requirements along with the needs in terms
of workflow automations, presented in the previous section; this section presents the

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 8

high-level view of the AQMO Workflow Management as designed to address the afore-
mentioned specificities of AQMO platform. We initially provide a high-level overview of
Ryax Workflow Management System and then we describe how Ryax will help ad-
dressing the different AQMO’s requirements.

4.1 High level view of Ryax Workflow Management System

Ryax solution developed by Ryax Technologies provides the lower-level resource
management and high-level workflow automation building blocks of AQMO. Ryax data
engineering platform provides the means to create, deploy, update and monitor work-
flows of data analytics while setting up the secure and efficient connection of the com-
putation domains in a way that data analytics workflows can be deployed on different
levels of the hybrid distributed infrastructure.

As Figure 1 depicts Ryax can handle different types of events as input, various types
of storage as output while providing any type of integrations for the analytics part.

Ryax high-level architecture is composed of 3 layers, as represented in Figure 2, the
Network, the Resource and the Workflow management layers.

Figure 1: General Overview of Ryax Workflow Management System

Resource Management & Orchestration (kubernetes - k3s)

 Network Control Plane (ZeroTierOne)

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 9

Network Control Plane

The Network Management layer in Ryax is implemented based on ZeroTierOne open-
source software. In particular, Ryax implements Software Defined Networking mecha-
nisms through a ZerotierOne integration regardless the type of connection being used
(3G, 4G, Wifi or Ethernet). Ryax allows secure authentication and authorization mech-
anisms of different compute resources along with the support of same virtual IP usage
even when the connection passes through a different network. In addition, ZeroTier
and consequently Ryax performs Network Address Translation and firewall traversal
transparently while providing encryption and compression of data by default.

Resource Management & Orchestration

Based on that low-level networking mechanisms, Ryax provides the secure networking
overlay necessary for the resource management tasks. For Resource Management,
Ryax is based on Kubernetes resource manager and container orchestration platform
and in particular upon k3s lightweight open-source distribution of Kubernetes. Kuber-
netes is used for its microservices architecture and modular design to manage a dis-
tributed computational system along with its abstraction capabilities and declarative
way to describe resources.

The choice of k3s distribution from Kubernetes has been made in order to have a more
lightweight middleware and to be able to deal with the autonomy of edge clusters. In
k3s the Kubernetes heavyweight internal procedures (such as the use of Docker Con-
tainer Runtime Interface (CRI) which is replaced by the more lightweight containerd
CRI) have been stripped down and are more adapted to constrained edge hardware.
In our architecture each bus will be equipped with specialized processing unit (Intel
NUC) which will be used for the pre-treatment of some collected data.

Data Analytics Workflow Management

Ryax provides the necessary tools to create workflows with high level abstractions and
descriptive approaches, while offering the adequate methods to distribute the pro-
cessing of data analytics across the resources of the computational platform along with
the support of data treatment in various forms (batch or stream).

Figure 2: Principal layers of Ryax solution

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 10

The goal is to provide the means to enable the development of data analytics workflows
following the principles of human thinking, rather than complex algorithms. Ryax ena-
bles a workflow to be expressed by a group of data manipulation functions which will
act upon a flow of data defined by at least one input and one output.

Ryax processing engine is based on a serverless architecture that allows applications
to be composed of a group of interdependent functions whose execution can be dis-
tributed on different resources in a flexible and dynamic way. In parallel it decorrelates
the complex task of functions deployment and execution lifecycle with the actual de-
velopment of their logic and allows functions to be entirely managed by the platform
offering features such as autoscaling and fault-tolerance.

Ryax provides a unified batch and stream processing engine offering the users the
capabilities to take into account different forms of data: either group of cold data such
as a directory of images (batch) or flow of hot data such as real-time sensor data
(stream).

4.2 Addressing AQMO’s Requirements with Ryax Workflow Man-
agement System functionalities

We enumerate some of the most important particularities of AQMO platform and we
present how the Workflow Management architecture deals with them:

AQMO Requirement 1. The multiple independent autonomous processing points
(Edge Central Units within buses and drones) are composed of low processing power
hardware (Intel NUC) and can collect data directly from sensors or through intermedi-
ate gateways (Rasberry Pi connected to a camera). Each Edge Central Unit needs to
have the ability to orchestrate its own workflows and there is no possibility to manage
the Edge Central Unit from the Cloud because the internet connection is intermittent.

WMS solution 1. Each Edge Central Unit will execute its own workload management
system Ryax in order to manage and orchestrate its local workflows autonomously.
Ryax provides the right abstractions to orchestrate workflows and manage the compu-
tational resources at the edge relying upon Kubernetes orchestrator. Ryax is specifi-
cally designed to function on constrained processing power edge computational units
so it makes use of a lightweight distribution of Kubernetes, the open-source software
k3s. K3s, and consequently Ryax, can provide the resource management even on
single node clusters (one master with no agents) which is the typical case of the Edge
Central Unit (running on Intel NUC). Nevertheless, the flexibility of the Edge Central
Unit to allow the connection of any types of sensors including those that need a gate-
way with processing power (intelligent camera connected with Raspberry Pi) raises the
need of managing clusters with processing power on multiple nodes. K3s and by ex-
tension Ryax can enable the connection of additional computing nodes on-the-fly as

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 11

long as the new nodes are connected in the same flat TCP/IP1 network with the master.
Then it can distribute the workload on the various nodes that participate in the cluster.

AQMO Requirement 2. The Fog Primary Server will have permanent Wifi connection,
it will be situated somewhere centrally in the city and it will be composed of a single
powerful computer (with possibility to have some more similar nodes to form a cluster
if needed). The Fog Primary Server will be used as the central location to work with
AQMO platform. A user connected to the Fog Primary Server will have the capabilities
to submit executions in the form of workflows to be deployed on one or more compu-
tational domains (Edge, Fog or HPC/Cloud), submit configurations for the Edge Central
Units, view reports and visualizations.

WMS Solution 2. The Fog Primary Server will execute its own workflow and resource
management system, in order to enable the execution of workflows autonomously. For
this the Fog Primary Server will make use of Ryax based on K3s Kubernetes distribu-
tion, just like the Edge Central Units,. The offloading of workflows to the Edge and the
configuration of Edge Central Units from a centralized point will make use of the capa-
bilities of Ryax to support multi-clustering where the k3s master of the Fog Primary
Server will have the ability to submit workflows on one or multiple k3s masters in a
federated way. The offloading of workflows and executions of simulations destined for
the HPC resources will pass through the support of specific API part of the HPC as a
Service software described in detail in the deliverable D4.1.

AQMO Requirement 3. The multiple Edge Central Units occasionally (at least once
per day) need to transfer the raw or pre-treated data coming from the different sensors
to the higher-level computational domain, the Fog Primary Server. For this each Edge
Central Unit needs to be able to communicate with the Fog Primary Server participating
in the same flat and secure TCP/IP network. Furthermore, different modes have to be
supported such as Wifi & 3G/4G and the intermittence of the connection needs to be
handled as efficiently as possible. In case the Edge Central Unit is composed internally
of a cluster of multiple nodes the same rules of flat and secure TCP/IP network apply.

WMS solution 3. Ryax, AQMO’s workflow management system is equipped with a
Secure Software Defined Networking overlay based on the ZeroTierOne software. This
open-source networking solution enables the communication of different computa-
tional resources on the same flat and secure TCP/IP network bypassing firewalls au-
tomatically and providing encryption of data by default. ZeroTierOne allows the author-
ization of each device demanding permission to participate in the network through in-
tegrated centralized techniques. On activation, it attributes a virtual network interface
(besides eth0) and a unique external IP address which both will remain intact even if
the device changes from Wifi to 3G/4G or vice versa. Intermittence of networks is
handled with ZeroTierOne and once the network connection is returned the same net-
work interface and IP address will be used. In the context of AQMO we will define one
virtual network overlay for the inter-clusters communications between Edge Central
Units and the Fog Primary Server. Furthermore in case an Edge Central Unit or Fog
Primary Server makes use of multiple nodes per cluster then each new networked

1 Transmission Control Protocol/Internet Protocol

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 12

computational device will join the same virtual network which will be used for both intra
and inter clusters communications.

AQMO Requirement 4. AQMO project needs to have a way to create workflows that
can be executed seamlessly on all different computational domains (Edge, Fog,
HPC/Cloud). Workflows need to be expressed with a high level of abstraction and us-
ing the same tools and methods regardless of where they are going to be executed. A
workflow should be expressed based on microservices architecture style which is eas-
ier to manage on a highly distributed computing infrastructure such as AQMO. The
workflow expression should facilitate the usage of streaming data and the support of
event processing besides the classical batch executions. For example, a periodic arri-
val of data coming from a sensor on the Edge Central Unit should trigger the continuity
of the workflow which may take place on the Edge Central Unit or on other computa-
tional domains. A command line utility to create workflows is primarily needed. A web
interface to create workflows to facilitate users with simple to use interface will be in-
teresting to have.

WMS solution 4. Ryax workflow management system supports workflow description
through a programming model with high level abstractions based on the high-level lan-
guage YAML. The programming model is based on serverless architecture which al-
lows to decompose an application into small functions that can connect among each
other with dependencies and can be executed autonomously on different computa-
tional resources, if needed. Furthermore, functions may be written in various general-
purpose programming languages. Ryax implements a unified batch and stream pro-
cessing engine which means that both streaming data and batch executions are sup-
ported. The creation of workflows can be done either using YAML files programmati-
cally along with a command line interface to manage workflows and functions or
through a web interface which allows a design based on intuitive tools using data-flow
view.

5 Ryax Workflow Management System Architecture, In-

ternals and Usage

This section provides a detailed description of Ryax Workflow Management System
analyzing its layers in more depth.

5.1 Software Defined Networking

This section describes the communications layer of Ryax Workflow Management Sys-
tem. Ryax offers a secure software defined networking (SDN) overlay which allows
different nodes on different physical networks to participate on the same virtual network
and exchange data in a secure way.

For this Ryax is based on the ZeroTierOne open-source software which is a distributed
network hypervisor built on top of a cryptographically secure global peer to peer

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 13

network. It provides advanced network virtualization and management capabilities in
addition to an enterprise SDN switch that functions across both local and wide area
networks and enabling the communication of almost all networked devices, VMs, con-
tainers, and applications as if they all reside in the same physical data center or cloud
region.

Eventually there will be a tight integration between Ryax and ZeroTierOne but for the
current version the SDN Overlay layer needs to be deployed independently in advance.
Once this is done we continue with the deployment of the Resource Management and
Orchestration layer.

To build a Zerotier Virtual Private Network (VPN) we need to select at least one con-
troller of the network which will hold all the needed information regarding the network
details, memberships authorizations, IP address ranges, etc. In the context of AQMO
there will be one virtual network for the communication of all Edge Central Units of all
buses and drones with the Fog Primary Server hence the network controller needs to
be kept within the Fog Primary Server since the Edge Central Units will be rarely online.
The ZeroTierOne controller does not provide a single point of failure, at least not for
communications, meaning that 2 Edge Central Units participating in the same virtual
network will have the ability to communicate even when the controller is not available.
However, without the controller no new authorizations will be possible until the control-
ler is back.

Here is the procedure to follow in order to build the ZeroTierOne VPN to be used
among the Fog Primary Server and the Edge Central Units.

1) Each node participating in the same network needs to have ZeroTierOne installed
either by downloading the right binaries or by building the sources:

2)Once ZeroTierOne is built it needs to be started in background as root, on each node:

3)Then we need to select one of the nodes to become the controller of the ZerotierOne
network. In our case this is the Fog Primary Server. We configure the network using
the “ryax-zero-conf” script developed and offered with Ryax packages to cover the
networking configuration needs. Hence we connect on the Fog Primary Server and we
initially create a new network with the following command:

$git clone https://github.com/zerotier/ZeroTierOne.git
$cd ZeroTierOne
$git checkout dev
$make

$sudo ./zerotier-one -d

$sudo ./ryax-zero-conf --net-add

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 14

This command will return a json output with the different details of the new VPN. In the
end it will show something like:

This is the "id" of the newly created VPN.

To get all the information related to a particular network with id=9d32babae01bc203
we can use the following command:

The following command can give the information about all the networks on which this
node is a controller.

4)Then we create the IP address ranges for this network using the following command:

5)Now that the network is created we have to connect each Edge Central Unit on the
previously created VPN. To do that we connect on an Edge Central Unit and use the
following command from ZeroTierOne software to join the previously created network:

The following command will show us the list of networks that we are connected on the
Edge Central Unit and the state of the connection

Initially we will get something like:

Which is normal because we need to authorize this Edge Central Unit node to partici-
pate on the VPN

6)To authorize a node to participate on a VPN we need to go on the controller and use
the ryax-zero-conf script.

The following command shows us the list of nodes that have requested authorization
for the VPN

"id": "9d32babae01bc203"

"$sudo ./ryax-zero-conf --net-info -n 9d32babae01bc203

"$sudo ./ryax-zero-conf --net-list

$sudo ./ryax-zero-conf --net-ipadd 10.147.15.0/24 -n 9d32babae01bc203

$sudo ./zerotier-cli join 9d32babae01bc203

$sudo ./zerotier-cli listnetworks

200 listnetworks <nwid> <name> <mac> <status> <type> <dev> <ZT assigned ips>
200 listnetworks 9d32babae01bc203 02:81:c1:f6:1d:7e ACCESS_DENIED PRIVATE zt2 -

$sudo ./ryax-zero-conf --member-list -n 9d32babae01bc203

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 15

We use the ID of each node as returned from the above command in order to authorize
them using the following command:

and we assign a particular IP address from the initially defined network range using
the following command:

7)Then we go back on the Edge Central Unit node on which we authorized access and
we check the status of the connection:

and we should get something like

while ifconfig should have a new ethernet interface with the above IP assigned

8)We do the following for all the Edge Central Units that are going to be connected in
the Fog Primary Server VPN. Once that is finished we can use the newly created Ze-
roTier virtual interface for the Resource Management and Orchestration layer.

Based on the previous procedure we are sure that the authorized networked devices
and only those are eligible to communicate in the VPN which guarantees security. Fur-
thermore, whenever the Edge Central Unit will lose connection and come back again
it will keep the same IP address (even if that is through another physical network inter-
face, ie. Wifi instead of 4G) which guarantees flexibility and efficiency in communica-
tions.

In case an Edge Central Unit or the Fog Primary Server is a multi-node cluster (at least
one additional computational device is connected to the principal master node) then
each computational networked device that participates in the multi-node cluster will get
a virtual network interface and an IP address by demanding authorization to join the
virtual network. This ensures the security of the internal communications and the safe
authorization of additional devices.

$sudo ./ryax-zero-conf --member-auth -z 43da16a7c4 -n 9d32babae01bc203

$sudo ./ryax-zero-conf --member-ipadd 10.147.15.1 -z 43da16a7c4 -n 9d32babae01bc203

$sudo ./zerotier-cli listnetworks

200 listnetworks <nwid> <name> <mac> <status> <type> <dev> <ZT assigned ips>
200 listnetworks 9d32babae01bc203 02:81:c1:f6:1d:7e OK PRIVATE zt2
10.147.15.204/24,10.147.15.1/24

zt2 Link encap:Ethernet HWaddr 02:81:c1:f6:1d:7e inet addr:10.147.15.1 Bcast:10.147.15.255
Mask:255.255.255.0

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 16

5.2 Resource Management and Orchestration

This section describes the resource management and orchestration layers of Ryax
Workflow Management System. Ryax is based on the resource manager and container
orchestration platform Kubernetes which is based on a microservices style architecture
which is ideal for our distributed and highly dynamic computational environment.

In particular Ryax adopts the K3S distribution of Kubernetes which is a lightweight
distribution specialized for edge and low power computational units. K3S offers the
same services as Kubernetes which is resource allocation, load balancing, autoscaling
and orchestration to site a few of its functionalities, with the difference that it does this
with a lightweight environment. Of course this means that there is support for less fea-
tures in comparison with the mainstream Kubernetes but the selection of which ones
to keep was optimal for edge and minimal environments so we can find more or less
all the most important ones. The basic changes with Kubernetes are that some Cloud,
storage and alpha or non-default modules have been removed , in addition etcd has
been replaced by a lightweight version sqlite. Docker has been removed from K3s and
it is substituted by Containerd. Containerd is an Open Containers Initiative (OCI) stand-
ard compliant container runtime, which is part of Docker stack and responsible for the
deployment tasks of Docker. So Containerd can deploy typical Docker images without
the heavyweight tools for pushing and building images that Docker provides. Further-
more the whole platform has been wrapped in a simple launcher binary file that handles
big part of the Transport Layer Security (TLS) complexity and various options. The
result is that the binary is around 40Mega Bytes (MB) and it needs no more than
512MB of Random Access Memory (RAM) to be deployed. Additionally, it can be used
to orchestrate clusters of both multiple nodes and simple mono-node machine (simi-
larly to minikube but with production-level features). K3S can orchestrate functions by
using either an online or a local offline registry. There is also the possibility to pre-
download needed images and deploy them when time comes facilitating cases where
internet connection is not always available.

All the above features make K3S an ideal resource manager and orchestrator for edge-
fog-cloud distributed environments and consequently for the AQMO project architec-
ture. In the context of AQMO, as it has been previously mentioned, each Edge Central
Unit will be equipped by one autonomous lightweight cluster managed by K3S. By
default the cluster will be mono-node but in case more computing nodes need to be
connected then a multi-node cluster will be deployed. The same will be applied for the
Fog Primary Server regardless the fact that this computational unit will be more pow-
erful and permanently connected to internet.

In the case we build a mono-node cluster for either the Edge Central Unit or the Fog
Primary Server then the installation procedure of the orchestration layer is composed
of simply downloading the latest version of k3s and deploying it with the following pa-
rameters:

$curl -sfL https://get.k3s.io
$k3s server –disable-agent --bind-address 10.147.17.126 --node-ip 10.147.17.126 --tls-san
10.147.17.126

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 17

The disable-agent flag will just deploy a master, with no workers, which will have the
ability to execute and orchestrate tasks (or pods, as they are called in Kubernetes
terms, which are groups of containers deployed on the same node) autonomously. The
bind-address, the node-ip and the tls-san flags take as parameter the virtual IP address
attributed to the master by ZeroTierOne and the procedure described in the previous
section. In order to deploy a multi-node cluster we need to launch an agent on each
computational unit with the following command, after downloading the same executa-
ble on each node.

Where the server flag defines the virtual IP address of the k3s master as used by the
k3s server command previously. When the server starts it creates a file
/var/lib/rancher/k3s/server/node-token. Using the contents of that file as NODE_TO-
KEN will allow us to join each node with the master server of K3S.u

The above procedure repeated for each Edge Central Unit and the Fog Primary Server
will enable us to obtain multiple mono or multi-node clusters with the advantage of
having all nodes of all clusters on the same virtual, flat and private IP network that
handles network intermittence.

K3s and in particular the command line kubectl has the ability to connect on different
clusters by taking advantage of the “kubectl config use context” option. Following the
examples herexxiv we can connect on the Fog Primary Server and by changing con-
texts we can execute, monitor or reconfigure different clusters remotely just by merging
the contents of the kubeconfig file of all the Edge Central Units with that of the Fog
Primary Server and then executing the following command

The first version of AQMO project release will provide the means to create an auto-
mated workflow that will wait for the internet connection to be established between an
Edge Central Unit and the Fog Primary Server and then after changing the context it
will automatically apply a configuration or launch a group of functions to be deployed
directly on the remote cluster. In a later version of AQMO project release we will pro-
vide advanced multi-cluster features where the K3s of the Fog Primary Server will have
the ability to federate executions on one or multiple clusters without the need to chang-
ing contexts. The distribution of tasks will take place dynamically. For this we are fol-
lowing project such as Cilium Container Networking Interface (CNI), Admiralty multi-
clustering and Kubernetes Federation v2.

$curl -sfL https://get.k3s.io
$k3s agent --server https://10.147.17.126:6443 --token ${NODE_TOKEN}

$kubectl use-context edge-central-unit-1
$kubectl use-context fog-central-unit
$kubectl use-context edge-central-unit-2

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 18

5.3 Workflows Management

This section describes the Workflows Management internals along with the usage of
the workflow management layer.

Ryax is designed in such a way so that it can perform processing of both batch and
streaming operations. This is done in order to optimally address use cases related to
IoT and Edge Computing. In Ryax terms, a workflow can be expressed as a flow of
data with at least one input, one output and intermediate functions performing data
manipulations on the data-flow. Viewing and managing a workflow in such a way facil-
itates the handling of streaming data which is by default more complex than batch and
enables the system to decompose the workflow into smaller interdependent functions
which is more adapted for a distributed processing runtime.

A graphical representation of the Workflow Management Layer as developed within
Ryax is provided by the figure 3. As represented in the figure 3, Ryax implements its
workflow management around an API which is playing the role of communication
means amongst different parts. In particular all the user interaction with the system
which begins on the command line or web user interfaces pass through the API which
are then communicated with the main system.

Ryax provides the workflow management based on a serverless architecture both on
the workflow creation and the workflow runtime. Serverless architecture technology
does not mean that there are not any servers for the application execution; but that the
application developer will act as if there are not. This means that the underlying system
handles all the issues related to application packaging and runtime relieving develop-
ers from the complexity to deal with them in their development.

Hence concerning workflow creation, Ryax programming model allows the expression
of a workflow by implementing stand-alone functions, connected amongst them to con-
vey a certain logic, whose code has no complexity whatsoever related to the distributed
infrastructure to be executed. The only requirement is to decompose the logic into

Figure 3: Ryax Workflow Management internal architecture

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 19

multiple steps (functions) which can be performed intuitively when one considers the
dataflow view of the workflow. The workflow creation representation is described on
the left of the figure. The Workflow programming model is based on YAML high-level
language which is used to enable users to express the workflow logic taking advantage
of the flexibility, simplicity and high level abstractions of YAML. The user can develop
the intermediate functions in different programming languages leveraging on the poly-
glot SDK offered by Ryax. Various general-purpose functions are already implemented
and stored within the function store. All new implementations of functions can be stored
there. This is the place where various external services integrations can be found and
used directly for the creation of new workflows. Finally the Function controller is re-
sponsible for packaging the function in a container and keep it in a registry so that it
can be downloaded for execution when time comes.

As far as the workflow runtime is concerned (figure 3 at the right), Ryax is responsible
to cope with all the complexities of executing on a hybrid edge-fog-cloud distributed
computational environment and hide them from the users making execution transpar-
ent. Ryax is developed in such a way that each packaged function is then orchestrated
by the underlying K3S software. The workflow controller is responsible to spawn the
execution and to manage the interaction among functions. The stream processing
runtime is the means that handles the execution of the analytics upon the data by
communicating with the underlying orchestrator K3S. The exchanges of functions
metadata are controlled by a specialized in memory distributed cache and the ex-
change of data are controlled by particular techniques similar with a persistent distrib-
uted storage medium but with further optimizations.

Figure 4 shows the same Ryax internal architecture but when it is deployed on multiple
computational resources. A part of the workflow runtime remains in the master such
as the workflow controller which will handle the spawning of workflows and functions
along with a memory and persistent storage facility to keep system and workflow re-
lated information on the master node. On the worker node only the runtime is available
which makes the system more lightweight. Of course in the case of mono-node cluster
the master and worker share the same node.

$cat testmqttgw.yaml
apiVersion: "ryax.tech/v1alpha4"
kind: Workflows
spec:
 id: testmqttgw
 humanName: Test the MQTT Gateway.
 functions:
 - id: mqttgw
 type: mqttgw
 version: "1.0"
 inputs_values:
 mqtt_server: "mosqito.default"
 mqtt_topics: ['$SYS/broker/uptime', '$SYS/broker/load/#']
 streams_to: ["pushtoredis"]
 - id: pushtoredis
 type: pushtoredis
 version: "1.0"
 inputs_values:
 host: "redis.ryaxns"
 port: "6379"
 key: "testmqttgw"
 data: "=MQTTgw.test_input1"
 streams_to: []

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 20

The installation and usage of Ryax workflow management system are provided within
the documentation of the software. However we provide here a high level view con-
cerning the creation of workflow and usage of the platform. First of all we need to create
our workflow by writing a yaml file with the main logic of it. The example here mentions
a simple workflow that collects data from Mqtt and pushes them to Redis Key/Value
store.

In the yaml we see that the workflow is decomposed in 2 functions one capturing data
from an Mqtt server on a specific topic and the other one which stores data to redis
when it receives something from Mqtt. The connection between the 2 functions is done
with the parameter streams_to on the Mqtt function side and with the data parameter
on the pushtoredis function to show which data to finally story on Redis.

Now that the general logic is created we need to create the logic of each individual
function. To create a function we need to create a directory containing a yaml file
(ryax_metadata.yaml) describing the function’s inputs and outputs and some specific
metadata; the source code of the function (handler.py) and its dependencies (require-
ments.txt) if there are. Depending on the programming language “funclang” of the
function, some specificities apply.

Figure 4: Ryax Workflow Management Internal Architecture view when deployed on a distributed com-
puting infrastructure

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 21

The following code is related to the function Mqtt:

The code of handler.py for Mqtt gateway is provided in the annexes along with some
more details related to the yaml parameters. Once the directory contains all the nec-
essary files the following command needs to be executed on the terminal using the
command line facility in order to create the function.

Once this is done for both functions declared in the workflow then we can start the
workflow which can be deployed with the following command:

The workflow will be distributed on the underlying computational environment using
the K3S orchestrator.

$ls mqttgw
requirements.txt handler.py ryax_metadata.yaml
$cat requirements.txt
hbmqtt

$cat ryax_metadata.yaml
apiVersion: "ryax.tech/v1alpha4"
kind: Gateways
spec:
 type: mqttgw
 humanName: MQTT Gateway.
 funclang: gateway
 version: "1.0"
 summary_template: "Get message from MQTT {topics} from the MQTT {server}"
 inputs:
 - help: MQTT server
 humanName: MQTT server to subscribe on
 name: mqtt_server
 type: string
 - help: MQTT topics
 humanName: MQTT topics to subscribe on
 name: mqtt_topics
 type: list[string]
 outputs:
 - help: MQTT message
 humanName: MQTT message data
 name: mqtt_message
 type: string

$ryax-cli function create path/to/your/function/directory

$ryax-cli workflow start testmqttgw

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 22

5.4 Ryax Workflow Management Architecture in the con-

text of AQMO

The graphical representation of Ryax architecture as it is being used in the context of
AQMO is provided by the following figure 5.

One of the principal things that is shown in this figure is the fact that the orchestration
and networking management of Ryax are not used to control executions upon the HPC
center. This is because the HPC center is controlled by a specific HPC resource man-
ager which keeps the control of the computational units. However the workflow man-
agement system can command the execution of workflows through the HPC as a Ser-
vice tools and in particular the EnginFrame API which can be used to trigger HPC
simulations. For this to be possible workflows will have the capability to include
EnginFrame calls from within their functions, hence special function type that inte-
grates with EnginFrame will be provided within the Ryax Function store in order to
facilitate the creation of workflows needing HPC simulations.

Most of the workflows will be distributed within single computational domains following
the examples presented in section 3. However, in the case of urgent computing work-
flows will need to span all 3 computational domains at once meaning that functions
part of the workflow will need to execute on the edge central units, others on the fog
primary server and finally HPC simulations may need to be started. Of course since
there is no actual control of the HPC resources, metadata or data can not be streamed
on the fly, as it happens from Edge to Fog domains, but we can at least make use of
the most recent updates of data and submit new simulations in high frequency.

Figure 5: Ryax Workflow, Orchestration and Communication layers as adapted in the context of
AQMO

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 23

6 Conclusion

The report presented the requirements and the challenges of Workflow Management
for AQMO project along with the software solution that has been adopted to cover the
specificities of the hybrid Edge/Fog/Cloud-HPC infrastructures and the automations
needed in terms of workflows. The report provides an introduction to the new workflow
management system Ryax which focuses on streaming operations and specializes on
Edge Computing and seamless deployments on multi-computational domain environ-
ments. It analyzes its internals and provides ways to solve the different issues that
have been raised in the context of AQMO.

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 24

7 Annexes

7.1 Detailed explanations related to the yaml specifications for the function creation

• apiVersion: gives the API version of the file. A given CLI will only support a given API version.

• kind: What kind of Ryax object this file is describing, in this guide we want to create a function.

• spec: a dictionary with all the fields specifying the function.

• type: the unique identifier of the function.

• detail: A human description of the function.

• funclang: the "language" of the function. This can be a programming language (ex: py-

thon3), or something else (ex: docker)

• version: The version of the function. Ideal to manage updates.

• inputs: an array of objects describing inputs.

• outputs: an array of objects describing outputs.

7.2 Detailed explanations regarding the function components for the particular case of
funclang python3:

• the requirements.txt file that lists the dependencies will be run against a standard pip com-

mand.

• a handler.py file that run the code. This code MUST have a "handle" function (non-asynchro-

nous), that takes a dict as input and returns a dict. The input (resp. output) dict will (resp.

must) contain a key for each input (resp. output) with their values as value.

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 25

7.3 Code of handler.py for section 5.4

$cat handler.py
#!/usr/bin/env python3
Copyright (c) Ryax Technologies

"""
Ryax MGTT gateway.

To test push to the gateway queue:

{"mqtt_server": "192.168.99.100:30883", "mqtt_topics": ["$SYS/broker/uptime", "$SYS/broker/load/#"] }

"""
import asyncio

import hbmqtt
from hbmqtt.client import MQTTClient
from hbmqtt.mqtt.constants import QOS_1
from ryax_common import get_logger

from ryax_gateway import RyaxGateway, ryax_gateway_main

logger = get_logger("GATEWAY_MQTT")

async def init_mqtt(mqtt_server):
 mqtt_client = MQTTClient()
 logger.info(f"MQTT server endpoint: {mqtt_server}")
 await mqtt_client.connect(f"mqtt://{mqtt_server}")
 return mqtt_client

class MQTTGateway(RyaxGateway):
 def validate_request_format(self, req_data):
 if "mqtt_server" not in req_data or "mqtt_topics" not in req_data:
 raise Exception(
 f"Malformed request, 'mqtt_topics' and 'mqtt_server' fields are required. Request {req_data}"
)
 async def register_request(self, req_id):
 req_data = self.request_store[req_id]["request_data"]
 try:
 mqtt_client = await init_mqtt(req_data["mqtt_server"])
 # FIXME arbitrarly choose QOS_1 because... why not!
 mqtt_client.subscribe([(topic, QOS_1) for topic in req_data["mqtt_topics"]])
 except hbmqtt.client.ConnectException as err:
 raise Exception(
 f"Request {req_id} because the MQTT server "
 f"{req_data['mqtt_server']} is unreachable: {err}"
)
 await super(MQTTGateway, self).register_request(req_id)
 self.request_store[req_id]["mqtt_client"] = mqtt_client

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 26

References

i Ewa Deelman, Tom Peterka, Ilkay Altintas, Christopher D. Carothers, Kerstin Kleesevan Dam, Kenneth
Moreland, Manish Parashar, Lavanya Ramakrishnan, Michela Taufer, Jef frey S. Vetter: The future
of scientific workflows. IJHPCA 32(1): 159-175 (2018)

ii Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole A. Goble, Matthew R. Pocock, Peter Li, Tom
Oinn: Taverna: a tool for building and running workflows of services. Nu cleic Acids Research
34(Web-Server-Issue): 729-732 (2006)

iii Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip Maechling, Rajiv Mayani,
Weiwei Chen, Rafael Ferreira da Silva, Miron Livny, R. Kent Wenger:
 Pegasus, a workflow management system for science automation. Future Generation
 Comp. Syst. 46: 17-35 (2015)

iv Casey Robinson, Douglas Thain: Automated packaging of bioinformatics workflows for portability and
durability using makeflow. WORKS@SC 2013: 98-105

v https://airflow.apache.org/
vi https://github.com/spotify/luigi
vii https://github.com/argoproj/argo
viii https://beam.apache.org/
ix https://cloud.google.com/dataflow/
x https://spark.apache.org/
xi https://flink.apache.org/
xii Malte Schwarzkopf: Cluster Scheduling for Data Centers. ACM Queue 15(5): 70 (2017)
xiii Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, John Wilkes: Borg, Omega, and Ku

 bernetes. Commun. ACM 59(5): 50-57 (2016)
xiv https://kubernetes.io/

 async def start_gateway_handler(self):
 while True:
 if len(self.request_store) == 0:
 await asyncio.sleep(10)
 for req_id, req_data in self.request_store.items():
 mqtt_client = req_data["mqtt_client"]
 message = await mqtt_client.deliver_message()
 packet = message.publish_packet
 data = str(packet.payload.data)
 logger.debug(f"Form post data: {data}")

 datatosend = {packet.variable_header.topic_name: data}
 await self.send_new_execution_event(req_id, datatosend)

async def cleanup(self):
 for req_id, req_data in self.request_store.items():
 mqtt_client = req_data["mqtt_client"]
 mqtt_topics = req_data["mqtt_topics"]
 await mqtt_client.unsubscribe(mqtt_topics)
 await mqtt_client.disconnect()

if __name__ == "__main__":
 ryax_gateway_main(MQTTGateway)

https://airflow.apache.org/
https://github.com/spotify/luigi
https://github.com/argoproj/argo
https://beam.apache.org/
https://cloud.google.com/dataflow/
https://spark.apache.org/
https://flink.apache.org/
https://kubernetes.io/

D5.1–Workflow Management System FINAL – 27/09/2019

Air Quality and MObility – AQMO 27

xv B. Hindman et al, “Mesos: A platform for fine-grained resource sharing in the data cen ter,” in NSDI'11

Proceedings of the 8th USENIX conference on Networked systems des sign and implementation,
2011.

xvi https://landscape.cncf.io/
xvii Luis M. Vaquero, Félix Cuadrado, Yehia Elkhatib, Jorge Bernal Bernabé, Satish Naraya na Srirama,

Mohamed Faten Zhani: Research challenges in nextgen service orchestra tion. Future Generation
 Comp. Syst. 90: 20-38 (2019)

xviii https://k3s.io/
xix https://github.com/kubernetes-sigs/federation-v2
xx https://cilium.io/blog/2019/03/12/clustermesh/
xxi https://github.com/admiraltyio/multicluster-scheduler
xxii https://www.zerotier.com/manual/
xxiii https://pjreddie.com/darknet/yolo/
xxiv https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

https://landscape.cncf.io/
https://k3s.io/
https://github.com/kubernetes-sigs/federation-v2
https://cilium.io/blog/2019/03/12/clustermesh/
https://github.com/admiraltyio/multicluster-scheduler
https://www.zerotier.com/manual/
https://pjreddie.com/darknet/yolo/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

